Chemical Engineering (BS): Honors **Concentration**

The Honors Program allows students to gain a deeper understanding of chemical engineering principles than would be acquired by completing the standard CHE curriculum. Admission to the program requires students to have earned a minimum overall GPA of 3.5 and a minimum GPA of 3.5 in CHE 205 Chemical Process Principles and CHE 225 Introduction to Chemical Engineering Analysis. An honors thesis based on a supervised research experience and completion of at least one semester of faculty-supervised research are required for completion of the Honors Program.

Plan Requirements

First Year

Fall Semester		Hours
CH 101 or CH 103	Chemistry - A Molecular Science ¹ or General Chemistry I for Students in Chemical Sciences	3
CH 102 or CH 104	General Chemistry Laboratory ¹ or General Chemistry Laboratory I for Students in Chemical Sciences	1
E 101	Introduction to Engineering & Problem Solving ²	1
E 115	Introduction to Computing Environments	1
MA 141	Calculus I ¹	4
ENG 101	Academic Writing and Research ²	4
	Hours	14
Spring Semester		
CH 201 or CH 203	Chemistry - A Quantitative Science ² or General Chemistry II for Students in Chemical Sciences	3
CH 202 or CH 204	Quantitative Chemistry Laboratory ² or General Chemistry Laboratory II for Students in Chemical Sciences	1
MA 241	Calculus II ¹	4
PY 205 & PY 206	Physics for Engineers and Scientists I and Physics for Engineers and Scientists I Laboratory ¹	4
Select one of the fo	Ilowing Economics Courses:	3
ARE 201	Introduction to Agricultural & Resource Economics	
ARE 201A	Introduction to Agricultural & Resource Economics	
EC 201	Principles of Microeconomics	
EC 205	Fundamentals of Economics	
E 102	Engineering in the 21st Century	2
	Hours	17

0		
Second Year Fall Semester		
	Organic Chemistry I ²	2
CH 221 or CH 225	or Organic Chemistry I or Organic Chemistry I for Students in Chemical Sciences	3
CH 222	Organic Chemistry I Lab ²	1
or CH 226	or Organic Chemistry Laboratory I for Students in Chemical Sciences	
CHE 205	Chemical Process Principles ²	4
MA 242	Calculus III ²	4
	Hours	12
Spring Semester		
CH 223 or CH 227	Organic Chemistry II or Organic Chemistry II for Students in Chemical Sciences	3
CH 224 or CH 228	Organic Chemistry II Lab or Organic Chemistry Laboratory II for Students in Chemical Sciences	1
CHE 225	Introduction to Chemical Engineering Analysis ²	3
MA 341	Applied Differential Equations I ²	3
PY 208 & PY 209	Physics for Engineers and Scientists II and Physics for Engineers and Scientists II Laboratory	4
	Hours	14
Third Year		
Fall Semester		
CH 315	Quantitative Analysis	4
& CH 316	and Quantitative Analysis Laboratory	
CHE 311	Transport Processes I ²	3
CHE 315	Chemical Process Thermodynamics ²	3
	Illowing Mathematics Electives:	3
MA 401	Applied Differential Equations II	
MA 402 MA 405	Mathematics of Scientific Computing	
MA 405 MA 427	Introduction to Linear Algebra Introduction to Numerical Analysis I	
MA 501	Advanced Mathematics for Engineers and	
IMA 501	Scientists I	
CHE 395	Professional Development Seminar	1
	Hours	14
Spring Semester		
Select one of the fo	Ilowing Chemistry Electives:	4
PCC 464	Chemistry of Polymeric Materials Laboratory	
BCH 351	General Biochemistry	
BCH 451	Principles of Biochemistry	
CH 437	Physical Chemistry for Engineers	
CH 610	Special Topics In Chemistry	
BIO 183	Introductory Biology: Cellular and Molecular Biology	
FS 402	Chemistry of Food and Bioprocessed Materials	
CHE 312	Transport Processes II	3
CHE 316	Thermodynamics of Chemical and Phase Equilibria	3

1

CHE 330	Chemical Engineering Lab I	4
ENG 333	Communication for Science and Research	3
	Hours	17
Fourth Year		
Fall Semester		
CHE 446	Design and Analysis of Chemical Reactors	3
CHE 450	Chemical Engineering Design I	3
CHE 497	Chemical Engineering Projects I	3
Select one of the follo	owing:	3
CHE 711	Chemical Engineering Process Modeling	
CHE 713	Thermodynamics I	
CHE 715	Transport Phenomena	
CHE 717	Chemical Reaction Engineering	
	Hours	12
Spring Semester		
CHE 435	Process Systems Analysis and Control	3
CHE 451	Chemical Engineering Design II	3
Honors Elective (p. 2)		3
CHE 495	Honors Thesis Preparation	1
	Hours	10
	Total Hours	110

¹ A grade of C or higher is required.
² A grade of C- or higher is required.

Code	Title	Hours
GEP Courses		
	es (http://catalog.ncsu.edu/undergraduate/gep- ements/gep-humanities/)	6
	ences (http://catalog.ncsu.edu/undergraduate/gep- ements/gep-social-sciences/)	3
	d Exercise Studies (http://catalog.ncsu.edu/ /gep-category-requirements/gep-health-exercise-	2
GEP Elective (h requirements/)	http://catalog.ncsu.edu/undergraduate/gep-category	/- 3
	blinary Perspectives (http://catalog.ncsu.edu/ gep-category-requirements/gep-interdisciplinary-	3
	owledge (http://catalog.ncsu.edu/undergraduate/ge ements/gep-global-knowledge/) (verify requirement	
	ns of American Democracy (http://catalog.ncsu.edu gep-category-requirements/gep-fad/) (verify	<i>\</i> ۱
0 0	e Proficiency (http://catalog.ncsu.edu/undergraduatequirements/world-language-proficiency/) (verify	te/
Total Hours		17

Honors Electives

Code	Title	Hours
CHE 460/560	Chemical Processing of Electronic Materials	3
CHE 461	Polymer Sciences and Technology	3
CHE 462/562	Fundamentals of Bio-Nanotechnology	3

CHE 463/563	Fermentation of Recombinant Microorganisms	2
CHE 465	Colloidal and Nanoscale Engineering	3
CHE 467	Polymer Rheology	3
CHE 468/568	Conventional and Emerging Nanomanufacturing Techniques and Their Applications in Nanosystems	3
CHE 475/575	Advances in Pollution Prevention: Environmental Management for the Future	3
CHE 488	Animal Cell Culture Engineering	2
CHE 495	Honors Thesis Preparation	1
CHE 497	Chemical Engineering Projects I	3
CHE 498	Chemical Engineering Projects II	1-3
CHE 525	Process System Analysis and Control	3
CHE 543	Polymer Science and Technology	3
CHE 546	Design and Analysis of Chemical Reactors	3
CHE 551	Biochemical Engineering	3
CHE 577	Advanced Biomanufacturing and Biocatalysis	3
CHE 596	Special Topics in Chemical Engineering	1-3
CHE 597	Chemical Engineering Projects	1-3
CHE 711	Chemical Engineering Process Modeling	3
CHE 713	Thermodynamics I	3
CHE 715	Transport Phenomena	3
CHE 717	Chemical Reaction Engineering	3
CHE 718	Advanced Chemical Reaction Engineering	3
CHE 719	Electrochemical Systems Analysis	3
CHE 752	Separation Processes For Biological Materials	3
CHE 761	Polymer Blends and Alloys	3
CHE 796	Special Topics In Chemical Engineering	1-6
CHE 797	Chemical Engineering Projects	1-3
CHE 798	Advanced Chemical Engineering Projects	1-3

Semester Sequence

This is a sample.

First Year		
Fall Semester		Hours
CH 101 & CH 102	Chemistry - A Molecular Science and General Chemistry Laboratory ^{1,2}	4
E 101	Introduction to Engineering & Problem Solving ³	1
E 115	Introduction to Computing Environments	1
ENG 101	Academic Writing and Research ³	4
MA 141	Calculus I ¹	4
	ercise Studies (http://catalog.ncsu.edu/ category-requirements/gep-health-exercise-	1
	Hours	15
Spring Semester		
CH 201 & CH 202	Chemistry - A Quantitative Science and Quantitative Chemistry Laboratory ^{2,3}	4
MA 241	Calculus II ¹	4
PY 205 & PY 206	Physics for Engineers and Scientists I and Physics for Engineers and Scientists I Laboratory ¹	4

Se	elect one of the follo	owing:	3
	EC 205	Fundamentals of Economics	
	EC 201	Principles of Microeconomics	
	ARE 201	Introduction to Agricultural & Resource Economics	
GF	P Health and Ever	rcise Studies (http://catalog.ncsu.edu/	1
un		ategory-requirements/gep-health-exercise-	ŗ
E	102	Engineering in the 21st Century	2
		Hours	18
Se	cond Year		
Fa	II Semester		
CH	1 221	Organic Chemistry I	4
	CH 222	and Organic Chemistry I Lab	
Cŀ	IE 205	Chemical Process Principles ³	4
	A 242	Calculus III ³	4
		tp://catalog.ncsu.edu/undergraduate/gep-	3
са	tegory-requirement	s/)	
		Hours	15
	oring Semester		
· · ·	1 223	Organic Chemistry II	4
	CH 224	and Organic Chemistry II Lab ⁴	
	′ 208 PY 209	Physics for Engineers and Scientists II	4
α.	FT 209	and Physics for Engineers and Scientists II Laboratory	
CF	HE 225	Introduction to Chemical Engineering	3
		Analysis ³	0
M	A 341	Applied Differential Equations I ³	3
	EP Requirement (ht tegory-requirement	ttp://catalog.ncsu.edu/undergraduate/gep- s/)	3
		Hours	17
Th	ird Year		
Fa	II Semester		
CH	H 315	Quantitative Analysis	4
&	CHE 316	and Thermodynamics of Chemical and Phase Equilibria	
CH	HE 311	Transport Processes I	3
	HE 315	Chemical Process Thermodynamics	3
Se	elect one of the follo	wing Mathematics Electives:	3
	MA 401	Applied Differential Equations II	
	MA 402	Mathematics of Scientific Computing	
	MA 405	Introduction to Linear Algebra	
	MA 427	Introduction to Numerical Analysis I	
	MA 501	Advanced Mathematics for Engineers and	
		Scientists I	
	EP Requirement (ht tegory-requirement	tp://catalog.ncsu.edu/undergraduate/gep- s/)	3
	HE 395	Professional Development Seminar	1
		Hours	17
Sr	oring Semester		
-	-	wing Chemistry Electives:	4
	PCC 464	Chemistry of Polymeric Materials	-
	BCH 351	Laboratory General Biochemistry	

	Total Hours	127
	Hours	13
CHE 495	Honors Thesis Preparation ⁶	1
category-requiremen	ts/)	
	/ http://catalog.ncsu.edu/undergraduate/gep-	3
Honors Elective (p. 2		3
CHE 451	Chemical Engineering Design II	3
Spring Semester CHE 435	Process Systems Analysis and Control	1 5 3
category-requiremen	ts/) Hours	15
	http://catalog.ncsu.edu/undergraduate/gep-	3
CHE 717	Chemical Reaction Engineering	
CHE 715	Transport Phenomena	
CHE 713	Thermodynamics I	
CHE 711	Chemical Engineering Process Modeling	
Select one of the foll	owing CHE Electives:	3
CHE 450	Chemical Engineering Design I	3
CHE 446	Design and Analysis of Chemical Reactors	3
CHE 497	Chemical Engineering Projects I	3
Fourth Year Fall Semester		
	Hours	17
ENG 333	Communication for Science and Research	3
CHE 330	Chemical Engineering Lab I	4
CHE 316	Thermodynamics of Chemical and Phase Equilibria	3
CHE 312	Transport Processes II	3
FS 402	Chemistry of Food and Bioprocessed Materials	
BIO 183	Introductory Biology: Cellular and Molecular Biology	
CH 610	Special Topics In Chemistry	
CH 437	Physical Chemistry for Engineers	
BCH 451	Principles of Biochemistry	

¹ Grade of C (2.0) or higher is required.

² CH 103 General Chemistry I for Students in Chemical Sciences/CH 104 General Chemistry Laboratory I for Students in Chemical Sciences may substitute for CH 101 Chemistry - A Molecular Science/CH 102 General Chemistry Laboratory and CH 203 General Chemistry II for Students in Chemical Sciences/CH 204 General Chemistry Laboratory II for Students in Chemical Sciences may substitute for CH 201 Chemistry - A Quantitative Science/CH 202 Quantitative Chemistry Laboratory

³ Minimum grade of C- required.

⁴ CH 225 Organic Chemistry I for Students in Chemical Sciences/CH 226 Organic Chemistry Laboratory I for Students in Chemical Sciences may substitute for CH 221 Organic Chemistry I/CH 222 Organic Chemistry I Lab and CH 227 Organic Chemistry II for Students in Chemical Sciences/CH 228 Organic Chemistry Laboratory II for Students in Chemical Sciences may substitute for CH 223 Organic Chemistry II/CH 224 Organic Chemistry II Lab.

⁵ Honors electives include CHE 460 Chemical Processing of Electronic Materials and above, CHE 5xx, CHE 7xx. ⁶ An honors thesis is required for completion of the Honors Program.

Career Opportunities

Careers in chemical engineering are sometimes exciting, always demanding, and ultimately provide a sense of accomplishment and achievement. Graduates find employment in sub-disciplines such as production, technical service, sales, management and administration; research and development; and consulting and teaching. Students desiring careers in teaching, research, or consulting are encouraged to continue their education and pursue a graduate degree (consult the Graduate Catalog). The undergraduate curriculum also provides strong preparation for graduate study in a wide range of professional specialties, and chemical engineering graduates often pursue careers in the medical sciences, business management, and law.

Career Titles

- Agricultural Engineer
- Automotive Engineer
- Biochemist
- Biomedical Engineer
- Chemical Engineer
- Chemist
- Dairy Technologist
- Electronics Engineer
- Engineering Professor
- Environmental Engineer
- Fire Prevention Engineer
- Industrial Air Pollution Analyst
- Industrial Waste Inspector
- Laboratory Tester
- Materials Engineer
- Materials Scientist
- Nanosystems Engineers
- Non-Destructive Testing Specialists
- Nuclear Engineer
- Nuclear Fuels Research Engineer
- Occupational Safety & Health Inspector
- Perfumer
- Petroleum Engineer
- Physicist
- · Physics Professor
- Product Safety Engineer
- Quality Control Managers
- Radiation Protection Engineer
- · Safety Inspector
- Sales Engineers
- · Sales Representative (Chemicals & Drugs)
- Soil Engineer
- Solar Energy Systems Engineers
- Sustainability Specialists
- Toxicologist
- Water/Wastewater Engineers

Learn More About Careers

NCcareers.org (https://nccareers.org/)

Explore North Carolina's central online resource for students, parents, educators, job seekers and career counselors looking for high quality job and career information.

Occupational Outlook Handbook (https://www.bls.gov/ooh/) Browse the Occupational Outlook Handbook published by the Bureau of Labor Statistics to view state and area employment and wage statistics. You can also identify and compare similar occupations based on your interests.

Career One Stop Videos (https://www.careeronestop.org/) View videos that provide career details and information on wages, employment trends, skills needed, and more for any occupation. Sponsored by the U.S. Department of Labor.

Focus 2 Career Assessment (https://careers.dasa.ncsu.edu/explorecareers/career-assessments/) (NC State student email address required) This career, major and education planning system is available to current NC State students to learn about how your values, interests, competencies, and personality fit into the NC State majors and your future career. An NC State email address is required to create an account. Make an appointment with your career counselor (https:// careers.dasa.ncsu.edu/about/hours-appointments/) to discuss the results.

Focus 2 Apply Assessment (https://www.focus2career.com/Portal/ Register.cfm?SID=1929) (Available to prospective students) A career assessment tool designed to support prospective students in exploring and choosing the right major and career path based on your unique personality, interests, skills and values. Get started with Focus 2 Apply and see how it can guide your journey at NC State.

American Institute of Chemical Engineers (https://www.aiche.org/) American Chemical Society (https://www.acs.org/) American Oil Chemists' Society (http://www.aocs.org/) National Society of Professional Engineers (https://www.nspe.org/)